转动惯量公式是什么
转动惯量计算公式为:I=mr²。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I 或J表示,SI 单位为 kg·m²。对于一个质点,I = mr²,其中 m 是其质量,r 是质点和转轴的垂直距离。
转动惯量是什么
转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。在经典力学中,转动惯量(又称质量惯性矩,简称惯矩)通常以I或J表示,SI 单位为 kg·m²。对于一个质点,I=mr²,其中 m 是其质量,r是质点和转轴的垂直距离。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
转动惯量计算公式
1、对于细杆:
当回转轴过杆的中点(质心)并垂直于杆时I=mL²/I²;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL²/3;其中m是杆的质量,L是杆的长度。
2、对于圆柱体:
当回转轴是圆柱体轴线时I=mr²/2;其中m是圆柱体的质量,r是圆柱体的半径。
3、对于细圆环:
当回转轴通过环心且与环面垂直时,I=mR²;当回转轴通过环边缘且与环面垂直时,I=2mR²;I=mR²/2沿环的某一直径;R为其半径。
4、对于立方体:
当回转轴为其中心轴时,I=mL²/6;当回转轴为其棱边时I=2mL²/3;当回转轴为其体对角线时,I=3mL²/16;L为立方体边长。
5、对于实心球体:
当回转轴为球体的中心轴时,I=2mR²/5;当回转轴为球体的切线时,I=7mR²/5;R为球体半径。